3.123 \(\int \frac {\cos ^3(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=140 \[ \frac {2 \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}-\frac {2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{15 a d}+\frac {28 \sin (c+d x)}{15 d \sqrt {a \cos (c+d x)+a}}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

[Out]

-arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+28/15*sin(d*x+c)/d/(a+a*cos(
d*x+c))^(1/2)+2/5*cos(d*x+c)^2*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)-2/15*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2778, 2968, 3023, 2751, 2649, 206} \[ \frac {2 \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}-\frac {2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{15 a d}+\frac {28 \sin (c+d x)}{15 d \sqrt {a \cos (c+d x)+a}}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d)) + (28*Sin[c + d*x]
)/(15*d*Sqrt[a + a*Cos[c + d*x]]) + (2*Cos[c + d*x]^2*Sin[c + d*x])/(5*d*Sqrt[a + a*Cos[c + d*x]]) - (2*Sqrt[a
 + a*Cos[c + d*x]]*Sin[c + d*x])/(15*a*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rule 2778

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-2*d*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n - 1))/(f*(2*n - 1)*Sqrt[a + b*Sin[e + f*x]]), x] - Dist[1/(b*(2*n
- 1)), Int[((c + d*Sin[e + f*x])^(n - 2)*Simp[a*c*d - b*(2*d^2*(n - 1) + c^2*(2*n - 1)) + d*(a*d - b*c*(4*n -
3))*Sin[e + f*x], x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\cos ^3(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx &=\frac {2 \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}-\frac {\int \frac {\cos (c+d x) (-4 a+a \cos (c+d x))}{\sqrt {a+a \cos (c+d x)}} \, dx}{5 a}\\ &=\frac {2 \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}-\frac {\int \frac {-4 a \cos (c+d x)+a \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{5 a}\\ &=\frac {2 \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}-\frac {2 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{15 a d}-\frac {2 \int \frac {\frac {a^2}{2}-7 a^2 \cos (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{15 a^2}\\ &=\frac {28 \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}-\frac {2 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{15 a d}-\int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx\\ &=\frac {28 \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}-\frac {2 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{15 a d}+\frac {2 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}\\ &=-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {28 \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}-\frac {2 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{15 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 118, normalized size = 0.84 \[ \frac {\cos \left (\frac {1}{2} (c+d x)\right ) \left (60 \sin \left (\frac {1}{2} (c+d x)\right )-5 \sin \left (\frac {3}{2} (c+d x)\right )+3 \sin \left (\frac {5}{2} (c+d x)\right )+30 \log \left (\cos \left (\frac {1}{4} (c+d x)\right )-\sin \left (\frac {1}{4} (c+d x)\right )\right )-30 \log \left (\sin \left (\frac {1}{4} (c+d x)\right )+\cos \left (\frac {1}{4} (c+d x)\right )\right )\right )}{15 d \sqrt {a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(Cos[(c + d*x)/2]*(30*Log[Cos[(c + d*x)/4] - Sin[(c + d*x)/4]] - 30*Log[Cos[(c + d*x)/4] + Sin[(c + d*x)/4]] +
 60*Sin[(c + d*x)/2] - 5*Sin[(3*(c + d*x))/2] + 3*Sin[(5*(c + d*x))/2]))/(15*d*Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 143, normalized size = 1.02 \[ \frac {4 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (3 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right ) + 13\right )} \sin \left (d x + c\right ) + \frac {15 \, \sqrt {2} {\left (a \cos \left (d x + c\right ) + a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{30 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/30*(4*sqrt(a*cos(d*x + c) + a)*(3*cos(d*x + c)^2 - cos(d*x + c) + 13)*sin(d*x + c) + 15*sqrt(2)*(a*cos(d*x +
 c) + a)*log(-(cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/
(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a))/(a*d*cos(d*x + c) + a*d)

________________________________________________________________________________________

giac [A]  time = 1.29, size = 116, normalized size = 0.83 \[ \frac {\sqrt {2} {\left (\frac {15 \, \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {a}} + \frac {2 \, {\left ({\left (17 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 20 \, a^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 15 \, a^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {5}{2}}}\right )}}{15 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/15*sqrt(2)*(15*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)))/sqrt(a) + 2*((17
*a^2*tan(1/2*d*x + 1/2*c)^2 + 20*a^2)*tan(1/2*d*x + 1/2*c)^2 + 15*a^2)*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1
/2*c)^2 + a)^(5/2))/d

________________________________________________________________________________________

maple [A]  time = 0.39, size = 183, normalized size = 1.31 \[ -\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-24 \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+20 \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+15 \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a -30 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\right )}{15 a^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3/(a+a*cos(d*x+c))^(1/2),x)

[Out]

-1/15*cos(1/2*d*x+1/2*c)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*si
n(1/2*d*x+1/2*c)^4+20*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*sin(1/2*d*x+1/2*c)^2+15*ln(4/cos(1/2*d*x+1/2*c)*(
a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a))*a-30*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))/a^(3/2)/sin(1/2*d*x+1/
2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^3}{\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^3/(a + a*cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^3/(a + a*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________